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A primitive variable, least-squares finite element formulation for inviscid, compressible 
flow is proposed. A unique feature of the formulation is the representation of groups of 
variables rather than single variables. Numerical solutions are presented for two-dimen- 
sional, subcritical flow about circular and elliptic cylinders and two representative airfoils. 

1. INTRODUCTION 

Finite element methods have been applied to flow problems with the greatest 
success when the governing equations are elliptic in character. In particular, viscous, 
incompressible flow has received considerable attention, e.g., [l-3]. The early finite 
element formulations [l] were based on a variational principle applied to the Navier- 
Stokes equations in streamfunction/vorticity variables. Recent applications [2, 31 
have more often used a Galerkin formulation in conjunction with the Navier-Stokes 
equations written in primitive variables. Subsonic, inviscid flow is also governed by 
equations that are elliptic in character. By recasting the governing equations into a 
streamfunction or velocity potential form, it is straightforward to derive a related 
variational principle. Previous finite element treatments of this problem have been 
based on such a variational principle, e.g., [4-61. 

If finite element formulations for subsonic+, inviscid flow are to be extended to 
handle transonic, inviscid flow, then the formulation must handle correctly the small 
regions in the flow where the governing equations are hyperbolic. An attempt to 
formulate a variational principle that is valid ‘for transonic flow has been made [7], 
although no results were presented. Since a variational formulation, can always be 
rewritten as a GaIerkin formuIation and since a conventional Galerkin formulation 
preserves the elliptic character of the original equations, it seems unlikely that a 
variational formulation will produce solutions to the transonic flow problem that 
exhibit evidence of a supersonic region terminated by an internal shock. 

Because of the unsuitability of a variationa approach to the transonic flow problem 
and because of the computational disadvantages (to be discussed below) of casting 
the governing equations in a velocity potential or streamfunction form, the present 
approach is based on the governing equations for the primitive variables in conserva- 
tion form. An analytic representation is made for groups of variables that appear in 
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the governing equation rather than for single variables. A least-squares formulation is 
applied to the resulting equation residuals and solutions are presented for subcritical, 
two-dimensional flow about circular and elliptic cylinders and for the flow about a 
6 % circular-arc airfoil and an NACA-0012 airfoil. A generalization of the least- 
least-squares formulation, that will permit the method to be extended to handle 
correctly transonic flow in which shocks would be expected, will be described in a later 
paper. 

The governing equations for two-dimensional, subcritical, inviscid flow, in terms of 
the velocity potential, 4, are 

and 

$+Y-l - * (A?” + d,“) = alp, 2 

where a is the sound speed, a, is the stagnation sound speed, and y is the specific 
heat ratio. A finite element formulation based on the above equation has the advantage 
that only one unknown, & , is required at each node. Equation (2) is a local algebraic 
relationship which updates the value of “a” at each step of the iteration. 

Equation (1) can be rewritten as a Poisson-like equation 

in whichfincludes all the terms that account for the compressible nature of the flow. 
Application of a variational finite element formulation to Eq. (3) permits an iterative 
procedure to be employed in which f is updated after each solution for &. The 
iterative procedure becomes less efficient as Mach number increases and fails for a 
local Mach number just above l.oD [6]. In practical problems, the pressure at the 
body surface is often required. To obtain the pressure from the final solution of the 
velocity potential, a numerical differentiation is required. The form off, in Eq. (3), is 
such that a large number of cross terms must be evaluated and manipulated at each 
step of the iterative process; this is computationally inefficient. 

To avoid the above difficulties and to permit extension into the transonic flow 
regime, a primitive variable formulation is proposed. The governing equations in 
conservation form are 

@a + cP)Y = 0, (4) 

CPU” + Ph! + (p4, = 0, (5) 

cp& + c/J@ + P), = 0, 0% 

and 

p = k * py. (7) 
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The following nondimensionalization is introduced, 

u nd = 4u.x %a = vlU* Pnd = PI&c 9 and Pna = (P - PJP~m2. 

Substitution of the above into Eqs. (4-6) produces no change in appearance if the 
subscript nd is dropped. Equation (7) is replaced by 

1+ y-i&a-p = py. (8) 

The far-field boundary conditions have been applied at a finite distance from the 
body in the form 

u = Uff 3 
lJ = Vff 2 

P = Pff * 

(9) 

To obtain uff , vff , and pff a Prandtl-Glauert coordinate transformation has been 
applied in conjunction with either complex variable theory or thin airfoil theory; 
details are indicated in [8]. The boundary condition at the body surface requires that 
there is no flow through the body surface. A typical flow-field geometry for the flow 
about a circular cylinder is shown in Fig. 1. Symmetry about AC is imposed by 
requiring that v = 0 on AB and CD. 

2. FINITE ELEMENT FORMULATION 

Equations (4)-(6) all have the same linear form, i.e., 

The introduction of a conventional finite element analytic representation, e.g. 

u = c Nj(X, y) *-iq, 
j 

(11) 
v = c Nj(X, Y) *ui, etc., 

j 

would destroy the similarity of form. Therefore, in the present formulation, representa- 
tions for groups of variables are introduced, e.g., 

PU = c N,(-T Y) .puj, 
j 

Puu = C Mj(Xv y) * PUVj y etc., 
3 
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where Mi and N, are finite element shape functions of, as yet, undetermined order 
and the overbar indicates the nodal value. The technique of representing groups of 
variables rather than single variables has been used before in applying the orthonormal 
method of integral relations to supersonic boundary layer flow [9, lo]. However 
this is the first time such a technique has been used in a finite element application, 
although the same concept has been suggested in a finite difference context [II]. 
Representing groups of variables retains the linearity of the equations and permits a 
lower-order numerical integration scheme to be employed. Since only single summa- 

FIG. 1. Schematic of grid for circular and elliptic cylinders. 

tions appear (compared with triple summations for a conventional finite element 
formulation) less algebraic effort and computation time is required to produce the 
algebraic equations. 

To produce accurate computational results it is important that the order of 
representation of the unknowns in Eq. (12) is chosen consistently. For slow viscous 
flow (low Reynolds number) the dominant terms in the momentum equations are the 
pressure gradient term and the viscous dissipation term. If these two terms are to 
produce a consistent error it is necessary to adopt a representation for pressure that is 
one order lower than that for velocity. Typically [2, 31 the pressure variation is 
represented by a first-order polynomial and the velocity variation by a second-order 
polynomial. If the Reynolds number is not small then the dominant terms in the 
momentum equations are the inertia terms and the pressure gradient terms except 
where close to the body surface. To consistently represent this physical balance the 
pressure interpolation should be second order if the velocity interpolation is first 
order. 

Olson and Tuann have carried out an eigenvalue analysis of various formulations 
of the incompressible Navier-Stokes equations that indicates the pressure interpola- 
tion should be one order less than the velocity interpolation irrespective of the Reynolds 
number. If this is correct it implies that a finite element solution in primitive variables 
at moderate Reynolds number will not produce very accurate solutions for the pressure. 
An alternative interpretation of the eigenvalue analysis is that the lower-order 
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pressure representation is a consequence and hence a disadvantage of the variational 
formulation in primitive variables. 

For the present problem all terms in each equation are expected to be of equal 
magnitude. Since only first derivatives appear, each term will contribute equally to 
the order of magnitude of the equation residual. Hence, 

(13) 

Since only integer order representations are possible the lowest consistent representa- 
tion, with y = 1.4, would have iVj as a sixth-order shape function and M, as a seventh- 
order shape function. Using such high-order representations would be unwieldy and 
due to the relatively dense stiffness matrix might well be inefficient. Consequently in 
the present formulation M, and Nj have been taken to be of the same order; based on 
the results of [13] quadratic, rectangular serendipity elements have been used for all 
groups of variables. 

It is interesting, in the light of [12], that attempts to apply the above representation 
with a Galerkin formulation led to a singular Jacobian when used with Newton’s 
method [S] which could only be avoided by using the Bernoulli equation on the y-axis 
of symmetry and the body surface. When the quadratic representation was used with 
a least-squares formulation the Jacobian was well behaved. 

Substitution of representations like Eq. (12) into Eqs. (4)-(6) produces the following 
residuals 

The least-squares formulation requires that 

J (a1 . R’lj2 + a2 * R”)’ + 01~ . R@j2) dx dy = minimum, 07) 

where q , 0~~) and c+, are scalars that may be used to adjust the relative weight of the 
various residuals. For all the results presented 0~~ = 01~ = OL, = 1. Differentiating 
Eq. (17) with respect to the unknown nodal values gives 

% . F . R'l' + a2 . i?!$ . R'2' + a3 . F . R(8) dx dy = 0, 
I 

i = l,n, 
P t 1 

w 
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where qi = {(j!Z)c)i, (jZ&, ii}. Substitution of Eqs. (14)-(16) and evaluation of the 
integrals produces an algebraic equation of the following form: 

+ yy * (p”yj + zi’y’ . j&} = 0, m = 1,3, i = 1, n. (19) 

In Eq. (19), m = 1 corresponds to qi = @u)i in Eq. (18). Thus for the three nodal 
unknowns ($Q , pUi , pi), three equations are formed. In Eq. (19) r:?‘, etc., are alge- 
braic functions of aij , bij , cij , dij , pUi , jZi , and pi where 

Uij = 
Sl 

aN. aN. 
--L * --J- . dx dy, 
ax ax 

8N. aN. 
bij = j-j- -$- . $- * dx dy, 

aN. aN. 
Cfj = 

11 
--L * --L . dx dy, 

ax ay 

(20) 

Equations (20) are evaluated numerically in the (4, 7) plane; an isoparametric map- 
ping [13] connects the physical (x, y) plane to the ([, r]) plane. The algebraic expres- 
sions for r:T), etc., are given in the Appendix. 

3. ITERATIVE SOLUTION TECHNIQUES 

The least-squares formulation has the advantage of producing a diagonally dominant 
stiffness matrix. Consequently, an iterative algorithm of the relaxation type is possible. 
By considering the dependence of Sjm), . m Eq. (19), on the diagonal term it is possible 
to write down the following iterative scheme 

q;+l = qr” - h * [$ (2’“)]j1 * $(“)(qJ. (21) 

The symbol v is the iteration step and h is a scalar that is chosen to increase the’rate of 
convergence. The iterative process was convergent if A was not greater than 1.‘7. The 
algorithm has the advantage of converging from any starting value ami requiring 
relatively little storage since [aSjm’/aqt] is a scalar and trivial to invert. However the 
iterative scheme was rather slow; the results for the NACA-0012 airfoil presented 
in Section 4 typically took 4-5 min of CPU time on an IBM 370/168 to converge. 
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Equation (19) has also been solved using Newton’s method. In this case the iterative 
scheme is 

$‘I = qiy - [J”Jl . fp@j*), (24 

where J, is the Jacobian, aSjm’/&j. The factorization of the Jacobian required consid- 
erable storage and execution time even though sparse matrix techniques were used 
[13]. Newton’s method was also used with a Galerkin formulation [13] and consider- 
able difficulty was experienced with the reduction in radius of convergence as the 
number of unknowns, n, increased [14]. 

For the flow about a 6 % circular-arc airfoil with a coarse grid (90 nodal unknowns) 
Newton’s method was about four times as fast as the relaxation method. However 
it was necessary to apply the relaxation method for 10 steps to provide suitable 
starting data for Newton’s method. 

4. RESULTS 

Numerical solutions are presented for the compressible flow past circular and 
elliptic cylinders and two representative airfoils at zero angle of attack. All the results 
presented are for subcritical flow and were obtained with the relaxation method 
described above. 

A schematic of the finite element grid for the flow about circular and elliptic 
cylinders is shown in Fig. 1. An isoparametric mapping relates the polar coordinates 
to the Cartesian coordinates in which the equation are written. For these two examples 
there are two stagnation points on the body at which the velocity components, u and 

0 10 20 30 ANGULl Loc*sT9oN ,&EES$ 80 90 

FIG. 2. Surface velocity variation for the flow about a circular cylinder at M, = 0.40. 
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v, are zero. In the present formulation the pressure and density at the stagnation 
points are considered part of the boundary conditions. If the Bernoulli equation is 
combined with Eq. (8), the following expressions are obtained for the stagnation 
values of density and pressure, 

psp = 11 + (+) M,atl’+“, 

and 

PSP = (PXP - WKf * (24) 

Numerical results for the flow about a circular cylinder with a freestream Mach 
number of 0.4 are presented in Fig. 2. The finite element solution was obtained with 
91 elements and 829 nodal unknowns. The Unite element results are seen to be in good 
agreement with the series solutions of Imai [I 51 and Lush and Cherry [16]. The finite 
element solution indicated that the flow was just sonic at the shoulder of the circular 
cylinder. 

Numerical solutions for the flow about a 2 : 1 elliptic cylinder at a freestream 
Mach number of 0.5 are shown in Fig. 3. These results were obtained with 91 elements 

2.0 - o JONES ETAL 

& - LEAST-SQUARES 
FINITE ELEMENT 

s 6 
A 
* 

A 0 

I I 
70 80 90 

FIG. 3. Surface velocity variation for the flow about a 2:l elliptic cylinder at MC = 0.50. 

and 829 nodal unknowns. The finite element solutions agree closely with solutions 
obtained by the method of lines [17]. For this case the numerical solutions indicated 
that the flow was everywhere subcritical. 

Numerical solutions for the flow about a 6 % circular-arc airfoil have been obtained 
using a computational grid of the form shown in Fig. 4. In the region outside ABCD 
the elements are all rectangular. This has caused some of the terms in the stiffness 
matrix to be zero and hence has reduced the computation time required to manipulate 
those terms. Numerical solutions for the surface pressure distribution at a freestream 
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Mach number of 0.71 are presented in Fig. 5. The finite element results were obtained 
with 102 elements and 868 nodal unknowns. Also shown in Fig. 5 are experimental 
results due to Knechtel [18]. The smooth airfoil results would have had a laminar 
boundary layer at least to the 50 % chord point. By introducing roughness just aft of the 
leading edge the turbulent boundary layer extends over the whole airfoil. The 
close agreement between the finite element results and the experimental results for a 
smooth airfoil is slightly misleading. Since the computational results take no account 

AEROFOIL 

FIG. 4. Schematic of grid used for the circular-arc airfoil. 
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FIG. 5. Pressure distribution on a 6 % circular-arc airfoil at Mm = 0.71. 
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FIG. 6. Schematic of grid used for the NACA-0012 airfoil. 
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of the displacement effect of the viscous boundary layer the computational results 
would be in better agreement if they were slightly above the experimental results. 

Computational results have been obtained for the flow about a NACA-0012 
airfoil using a grid of the form shown in Fig. 6. The use of a polar grid adjacent to 
the nose of the airfoil permits more nodes to be placed in the region where the nodal 
unknowns vary rapidly with position. In the region ABCDEFA all the elements are 
rectangular. Computational results for freestream Mach numbers of 0.4 and 0.72 are 
shown in Figs. 7 and 8. The finite element solutions shown in Fig. 7 were obtained 
with 88 elements and 767 nodal unknowns. Also shown in Fig. 7 are experimental 
results due to Amick [ 191 and numerical results due to Emmons [20]. However, whereas 
the finite element solution corresponds to an airfoil in an undisturbed freestream, the 

-O.l- x FINITE ELEMENT SOLUTION 
- EXPERIMENT (PMICKI, Re, - 10’ 

0 - --- RELAXATION METHOD (EMMONS) 

FIG. 7. Pressure distribution on an NASA-0012 airfoil at Mm = 0.40. 

- 0.8 - 
CP 

- FINITE DIFFERENCE METHOD (SELLS) 
----- FINITE ELEMENT METHOD 

0.2 

0.4. 

FIG. 8. Pressure distribution on an NACA-0012 airfoil at Mm = 0.72. 

results of [19, 201 correspond to an airfoil in a wind tunnel. The application of a 
wind tunnel blockage correction to the results of [19, 201 would reduce the peak 
negative pressure coefficient by approximately 4 to 5 %. 

Finite element solutions for a freestream Mach number of 0.72 are compared 
with a finite difference solution due to Sells [21] in Fig. 8. The finite element results 
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were obtained with 96 elements and 837 nodal unknowns. Agreement is reasonable 
except near the nose of the airfoil, probably due to the coarseness of the’ grid used 
there. 

5. CONCLUSION 

A primitive variable, least-squares finite element formulation has been applied 
to inviscid, compressible flow. A unique feature of the formulation is the analytic 
representation of groups of terms rather than individual terms. Numerical solutions 
of high accuracy have been obtained for two-dimensional subcritical flow. A generali- 
zation of the least-squares method to permit the proper treatment of flows for which 
isolated shock waves and regions of supersonic flow occur is currently under investi- 
gation. 

APPENDIX: DERIVATION OF THE ALGEBRAIC EQUATIONSOBTAINED FROM THE 
LEAST-SQUARES FORMULATION 

After application of the least-squares finite element formulation to Eqs. (4)-(6), 
the following algebraic equations are obtained 

Sam’ = C {ri?’ ’ (pu)j + Siy’ * (pv)j + tjy’ * (pu’)j + Xi?’ * (puu)j 

; y!“’ . (3). + z!?’ . p.) = $3 3 z3 3 0 7 m = 1,3, i = 1, n. 

In the following expressions for r/y) , etc., aij , bij , cii , dij are defined by Eqs. (20) 

ri(il’ zzz a c ’ aij ’ pi 7 

(1) _ 
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where rmU = pz+1/M,2 - @ii): and EZ = $‘+l/Mm2 - (ii@. 
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